Dynamic Memory and
Arrays

What are real-world examples of classes and
abstractions?




Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm




Roadmap

arrays

dynamic memory
management

linked data structures

Life after CS106B/




classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving




classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

v

v

arrays

dynamic memory
management

linked data structures

testing ‘/

algorithmic analysis \/

recursive problem-solving ‘/




classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

linked data structures

testing

algorithmic analysis

recursive problem-solving



classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

Ueve now crosced the
abstraction bauudary./

linked data structures

testing

algorithmic analysis

recursive problem-solving



Roadmap

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

Life after CS106B/




C++ basics

Ordered data rﬁ-‘.b(,d’ &

“k

T e o —
’ -Ha- 4. ] I-m—n
-.-mﬂii - o -n --,u- =

sets + maps R E




Readymade containers are great!

® You can do so much with
the ADTs that you have!

o Write code that sorts names in the )
U.S. census

o Use stacks, grids to search for
optimal paths in a maze

o Generate combinations recursively
using sets

e YOu used their interfaces.




But how are those containers implemented?

e \We’'ll need to learn about more basic building
blocks in C++: arrays, pointers.
e Tomorrow, we’'re building our own vector!

And what if we need custom containers / objects?

e \We have to define our own classes.
e A4, you'll be building a priority queue class!



For example, Google Chrome

& chromium / chromium ' public ® Watch 508 ~ % Fork 4.8k ¥¢ Star 126k

<> Code {7 Pullrequests 54 ® Actions () Security |~ Insights

¥ main v  chromium / chrome [ browser [ apps / platform_apps / Go to file Add file »

Maria Petrisor and Chromium LUCI CQ Make AddAppOptions.iconUrl optional ... 86f35d 3 daysago O History

api Make AddAppOptions.iconUrl optional 3 days

BUILD.gn Add the non mojom LaunchContainer. 14 days

app_browsertest.cc Modify AppLaunchParams to use the non mojom LaunchSource 4 days ago
app_browsertest_util.cc Modify AppLaunchParams to use the non mojom LaunchSource. 4 days ago
app_browsertest_util.h remove DISALLOW_COPY_AND_ASSIGN from chrome/browser/apps 2 years ago
app_load_service.cc Add missing includes of notreached.h (3/N) 4 months ago
app_load_service.h Rewrite most (Foox field_ pointer fields to (raw_ptr<Foo> field_. 8 months ago
app_load_service_factory.cc [Extensions] Remove NOTIFICATION_EXTENSION_HOST_DID_STOP_FIRST_LOAD f.. 10 months ago
app_load_service_factory.h Cleanup: Remove redundant virtual overrides 2 years

app_pointer_lock_interactive_uitest.cc [Extensions] Convert (most of) apps test message listener uses 2 months ago

app_shim_interactive_uitest_mac.mm Rewrite raw pointer fields to use raw_ptr<T> for mac 24 days ago

)
O
b
0O
B
0O
0O
B
b
B
B
0

app_shim_quit_interactive_uitest_mac.mm Rewrite raw pointer fields to use raw_ptr<T> for mac 24 days ago




Going under the hood

e \We'll need to learn
about more basic
building blocks in
C++.

e \We'll need more
control of memory
management.

arrays

dynamic memory
management

linked data structures



Going under the hood




Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm




TOday’S What are the fundamental
building blocks of data

g uestion storage provided by C++?




Review

Today'’s
topics

Dynamic Allocation

. Arrays

Pointers




Review



How do we accomplich thic in

\[\ C++7 With !

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality




class
A class defines a new data type for our
programs to use.




encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible



Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

instance
When we create an object that is our new type,
we call this creating an instance of our class.



A class is a type that you define

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the struct itself).
o A class defaults to private members (accessible only inside the class
implementation).



Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;



How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, clasces are uceful in helping ue with complex programs where

information can be grovped info objects.



Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.



Struct vs class?

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the struct itself).
o A class defaults to private members (accessible only inside the class
implementation).

"A struct simply feels like an “A class feels like a living and

open pile of bits with very responsible member of society with

little in the way of intelligent services, a strong
encapsulation or encapsulation barrier, and a well defined
functionality.” interface.”


https://isocpp.org/wiki/faq/classes-and-objects

Structs vs. classes (BankAccount)

struct BankAccountStruct {
string name;
double amount;

s

class BankAccount {
public:
BankAccount(string name, double amount);
void deposit(double depositAmount);
void withdraw(double withdrawlAmount) ;
void transfer(double transferAmount,
BankAccount& recipient);

double getAmount() const;
string getName() const;

private:
string name;
doub'le amount;

I




Structs vs. classes (BankAccount)

Better ehcaps’a/aﬁah./ Error | c1ass Bankaccount {

checking + limitations! public:

BankAccount(string name, double amount);
void deposit(double depositAmount);

? void withdraw(double withdrawlAmount) ;
void transfer(double transferAmount,

struct BankAccountStruct {

BankAccount& recipient);
string name; COhtl’U//ed P )3
N double amount; access'./ \ double getAmount() const;
b

_a string getName() const;

pr1vat<?: No direct
string name; [\
double amount; access to

b private data!




Final Takeaways

e The constructor is a specially defined method for classes that initializes the

state of new objects as they are created.
o  Often accepts parameters for the initial state of the fields.
o  Special naming convention defined as ClassName ()
o You can never directly call a constructor, but one will always be called when declaring a new
instance of an object

e this
o Refers to the current instance of an object that a method is being called on
Similar to the self keyword in Python and the this keyword in Java
Syntax: this->memberVariable
Common usage: In the constructor, so parameter names can match the names of the object's

o O O

member variables.



RandomBag Revisited



#pragma once
#include "vector.h"

class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size () const;
bool isEmpty () const;

private:
Vector<int> elems;

};







What are the fundamental
building blocks of data storage
provided by C++7



Getting Storage Space




Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.




Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

e That storage space is acquired using




Getting Storage Space

e The Vector, Stack, Queue, etc. all need storage space to put the
elements that they store.

e That storage space is acquired using

e Essentially:

o You can, at runtime, ask for extra storage space, which C++ will give to you.
© You can use that storage space however you’d like.
o You have to explicitly tell the language when you’re done using the memory.



Arrays




Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called




Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o  Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.




Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o  Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.




Arrays

e Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called

e An array is a contiguous chunk of space in the computer's memory, split into

slots, each of which can contain one piece of information
o  Contiguous means that each slot is located directly next to the others. There are no "gaps".
o All arrays have a specific type. Their type dictates what information can be held in each slot.
o Each slot has an "index" by which we can refer to it.

Index: 0 1 2 3 4 5 6




Dynamically Allocating Arrays




Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If
the array elements have type , the pointer will have type

O e.g.int*, string*, Vector<double>*




Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If
the array elements have type , the pointer will have type

O e.g.int*, string*, Vector<double>*

e Then, create a new array with the keyword and assign the
pointer to point to it.




Dynamically Allocating Arrays

e First, declare a variable that will point at the newly-allocated array. If
the array elements have type , the pointer will have type

O e.g.int*, string*, Vector<double>*
e Then, create a new array with the keyword and assign the
pointer to point to it.

e In two separate steps:

Type* arr;
arr = new Type[size];



Dynamically Allocating Arrays

e Declare a variable that will point at the newly-allocated array. If the

array elements have type , the pointer will have type
O e.d.int*, string¥*, Vector<double>*
e Then, create a new array with the keyword and assign the

pointer to point to it.
e In two separate steps:

Type* arr;
arr = new Typel[size];
® Or, inthe same line:

Type* arr = new Type[size];



Pointers




Pointers

e A pointeris a brand new data type that becomes very prominent when

working with dynamically allocated memory.




Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.




Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.

, which is like the specific coordinates of where a piece of
memory exists on the computer.



Pointers

e A pointeris a brand new data type that becomes very prominent when
working with dynamically allocated memory.

e Just like all other data types, pointers take up space in memory and can store
specific values.

e The meaning of these values is what's important.

, which is like the specific coordinates of where a piece of
memory exists on the computer.

e Thus, they quite literally "point" to another location on your computer.



Announcements



Announcements

e Midterm grades

o Grades will be released shortly after class today via Gradescope (should receive email)

o We want you to go through your feedback and reflect on your learning/mastery!

o To encourage this, your section leaders will be offering mid-quarter check-in meetings

m  Meet with your SL and discuss your midterm performance, your thoughts on your mastery

of the content from the first 5 weeks, your plans for the rest of the quarter, etc.
If you attend AND engage in thoughtful discussion you earn back s the missed points.
To participate: submit a brief reflection (2-3 sentences is fine) on areas you want to
focus on to the “Midterm Check-In” assignment on Paperless. Then use the IG
Scheduling feature to sign up for time slot with your SL.

e Assignment 3 is due Tuesday, July 19 at 11:59pm with a 24-hour grace.
e Final Project Proposal due Sunday, July 24 at 11:59 pm.
e Weekly announcements will be posted tonight.



Dynamic Allocation
Example



int main() {

int numValues = getInteger ("How many lines? ") ;
string* arr

for (int 1
arr[i]
}

for (int 1

= new string[numValues];
O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {

cout < 1 << ": " KL arr[i] << endl;




int main() {

int numValues = getInteger ("How many lines? ");
string* arr

for (int 1
arr[i]
}

for (int 1

= new string[numValues];
O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {

cout < 1 << ": " KL arr[i] << endl;




int main() {

int numValues
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout << 1

(e

numValues

getInteger ("How many lines? ") ;

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {
<< ": " <L arr[i] << endl;




int main() {

int numValues
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout << 1

(e

numValues

getInteger ("How many lines? ");

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {
<< ": " <L arr[i] << endl;




int main() {

int numValues =
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout < 1 L ":

(e

numValues

getInteger ("How many lines? ") ;

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {
" << arr[i] << endl;

'
arr




int main() {

int numValues =
string* arr

for (int 1 =

}

arr[i] =

for (int 1 =

cout << 1

(e

numValues

getInteger ("How many lines? ") ;

= new string[numValues];

O0; i < numValues; i++) {
getLine ("Enter a string: ")

O0; 1 < numValues; i++) {
<< ": " <L arr[i] << endl;

I
0x8084ffff '
arr




int main() {

int numValues =
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} g 7 ' 0x8084ffff '
numValues arr
Index:

getInteger ("How many lines? ") ;




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 L ":

(e

numValues

" << arr[i] << endl;

' é}
arr

V Becavse the variable arr
poin f¢ to the array, 1t (s

Index: 0 1 2 3 4 0&(//86{ a




int main() {

int numValues =
string* arr =

new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} g 7 ' 0x8084ffff '
numValues arr
Index:

getInteger ("How many lines? ") ;




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} E 7 ' 0x8084ffff ' E '
numValues arr i
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} E 7 ' 0x8084ffff ' E '
numValues arr i
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} E 7 ' 0x8084ffff ' E '
numValues arr i
We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > ]

} E 7 ' 0x8084ffff ' E '
numValues arr i
We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > I

} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > I

} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > I

} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can Dance
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {
cout < 1 << ": " KL arr[i] << endl;

} r— > I

} E 7 ' 0x8084ffff ' E '
numValues arr i
We Can Dance
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} T " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} E 7 ' 0x8084ffff ' E '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int i = 0; i < numValues; i++) ({
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ] [ |
} E 7 ' 0x8084ffff ' E 7 '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1




int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) {

cout < 1 << ": " KL arr[i] << endl;

} | " ] [ |
} E 7 ' 0x8084ffff ' E 7 '
[7)]
numValues arr i
We Can Dance If We Want To
Index: 0 1




int main() {
int numValues = getInteger ("How many lines? ");
string* arr = new string[numValues];
for (int i = 0; i < numValues; i++) 0: We
arr[i] = getlLine("Enter a strin )
} [1] g ( 91. can
for (int 1 = 0; i < numValues; i++) 2: Dance
cout << i << ": " << arr[i] << ef3: If
W o= |
. 6: To
numValues arr
\
We Can Dance If We Want To

Index: 0 1 2 3 4 5 6



int main() {

int numValues =
string* arr =

getInteger ("How many lines? ");
new string[numValues];

for (int 1 = 0; i1 < numValues; i++) {
arr[i] = getLine("Enter a string: ");

}

for (int 1 = 0; i < numValues; i++) ({

cout < 1 << ": " KL arr[i] << endl;

} | " ]
} g 7 ' 0x8084ffff '
[7)]
numValues arr
We Can Dance If We Want To
Index: 0 1




Arrays

e Arrays are allocated with a fixed size that you can’t
subsequently change.

e FEven though arrays have a fixed size, C++ does not make
that size available to the programmer.

o As aresult, programs that work with arrays typically
need an additional variable to keep track of the
number of elements.

e When we use arrays to build classes, you use pointers and
new to allocate and keep track of the memory

e C++ performs no built-in bounds-checking to ensure that
the elements you select are actually present in the array.



Attendance ticket:
https://tinyurl.com/whylearnarray

Please don’t send this link to students who are not here. It’s on your honor!



https://tinyurl.com/whylearnarray

Pitfalls and Dangers



Pitfalls and Dangers




Pitfalls and Dangers

e C++’s language philosophy prioritizes speed over safety and simplicity.




Pitfalls and Dangers

e C++’s language philosophy prioritizes speed over safety and simplicity.

e The array you get from newf(] is . it can neither grow nor

shrink once it’s created.
o The programmer’s version of “conservation of mass.”




Pitfalls and Dangers

e C++’s language philosophy prioritizes speed over safety and simplicity.

e The array you get from newf(] is . it can neither grow nor

shrink once it’s created.
o The programmer’s version of “conservation of mass.”

e The array you get from newf[] has Walking off the
beginning or end of an array triggers undefined behavior.



Pitfalls and Dangers

e C++] What are potential examples of "undefined behavior" icity.
that could occur if you access beyond the bounds of an
e Thelarray? (select all that apply)
shril ® Nothing happens
e You get arandom (garbage) value back
e Your program crashes
e The| ® You makeyour computer vulnerable to a hacker ff the
beg takeover
e You make the front page of the New York Times

O




A brief interlude for
some ethics + real
world consequences...



“All the News

That's Fit to Print" >

¢ New fork Cime

Lats Edton
h!’nhﬁy ey, embder.
l.n% 1--101“

mmnch«.@-
Hgh 38, low 41 Dewie, pege Die

VOLCXXXVIIT ... NO A7) copyruhe €200 v tow Tork Taws "~

NEW YORK, FRIDAY, NOVEMBER 4, 18§

S cwmny gt T men S Sew P h Tl s o Lang hlani.

JSCEN'TSI

Registration Off

Thxre has boes & proseaxed
deciine i e peroertage of o).
#ble Arericars whe sov reggs
wred 13 voue, 8 reanarch groop
fepans

m—ug.mmtnuu« 2
ciigble Amcrxam wiw
| megaterd -nunndmb
| Ta-percex, dewn 11 pena
|t e 1980 bl -

Tha graup's wndy canladd |
hat In many of Be 2 ek
winre el [gures are asal
ablc U dechae was among

Guv Michael 8 Dukaicis having Ris pictare ticen by
270 year ofd 1am 31 3 1oam maesng I Fairiees This,
Pa. Mglndmmnmhn

phasined the drag peablecs. Page AlS. Vics Sres

kaowledged beiag 2 iteral, M. Haah ot
that “this election s not abow labels.” Fage AJS.

‘Virus’ in Military Computers

Disrupts Systems Nationwide_

By JOMN MARKOFF

12 a0 wervees thae ramee gare-

By loe peaerday afermecn
mgeicr eajers worr calleg
he wirws e barges! woad ever
o (he ration’s casrpaters.
The Rig b

“The Mg b b (e & rele.

Chifford Sl & compaer s
curiy axpent 31 Harvand Uy
gy, added: “Theve b e oo 395
N Maseger Wio 3 sol lcarag
B ha¥ ecsl '3 cuaing ssor-
m3us heachckes ”

The sllectad corepatrrs carry 3
wremmendons wanety of dusecs

nlznr; oficils,  reseacthery
a3 carporstions.

B same seastive midtary
data are lpvelved, e compuners

s Tt
o ¢ comtrol of socicar woapons,
are hought =t o bawve bemn
s bend Yy Do vmix

ParstictimMtees Vo

Coorpuaoes virumes ao» w ey
Do aan paraiel Is O con
ey the dehwvior of ble
MW vruses A virus s 8 pre
Eram, or & =t of Etructions 1 8
corsputer, amt s ekher plaroed
o= 3 Soppy ik Teart 13 be uase

ating weer boes o
Sala setwarks with cther comrpet-
o

The prograrss cas cagy them-
mmhm"‘m
scllwace, or operaang SFers,
u—ly-ﬂ:uulnm.uu.
don 1 Swwsehes From Dere,
the progaam can be pansed o
28 10na | cormpaters.

hwtah;mim p——

e saftware’s cromtor, the pro-
ETADR gk (3808 & prevIcanve
Per ceherwias RAIANeNE mesie gr
I appear on e :uwunn

PENTAGON REPORTS
INPROPER CHARGES *
FOR CONSULTANTS

CONTRACTORS CRITICIZID

e

Inquary Shows Routing Billing
of Government by Industry *
— on Foes, Some Dubious

By JOMN H CUSHMAN J¢
DO e P TN e ’

—
VASHINCTION, Nov. 3 — A Pl

ndey ner, the contracians’ ows palicies

wrh vl Grectly Deew(i Do MiMary
£ % 5 be pad for by the Deferne De

creen 08 il coud 1y
desirwy duis & dw commpeaer's
mewety. I Gds cams, the wites
programs &9 rothlng more en
reprodace ned! ragedy

Thes prograee wes sppa-otly &
real of openees, et

;'nmr‘t |l.-- s ot uv-
Beradcn Lovk ol Comebians

he Justoe Doper trmest’s com ey
15 eramdsal wrveslipalion bes focesed o
trethn o commukants sad Soir role

= the Cexgreny sad seling of wespons,
and research mbormation armeny  Cotierdon '\x'A—" Crdarne? 30 the Dedarcs Deparumact bac e
‘ S red S wsing cnsullans 0




“All the News
That's Fit to Print"

Sble Arericars whe sov reggs
wred 13 voue, 8 reanarch groop
repans

Notmwally, e percesiage of
Amcxam wio are

hat 0 many of e 3 Pes
winre el [gures are asal
ablc U dechae was among

|

B Ph TR snom o0 Loy las

Nl

JUDGMENT DAY

The Sentencing of Robert Morris Jr.

PENTAGON REPORTS
ide. | NPROPER CHARGES *

| FOR CONSULTANTS

CONTRACTORS CRITICI

mddeary

- Inguary Shows Routine Billing
of Government by Industry *
41— on Foes, Some Debious

By JOMN K, CUSHMAN J¢

BN e P T

VASHINGION, Nov. 3 — A Pesin
b fourd

| ekl rectiy Deew(H Do midary

puter’ s £ 6 4s be pad lor By he Deferne De
atically rimest Ofies, Pentagon treeatigs-
peanr's wrsdcoversd, this oot ls net et

,m Berader Lovk ol Camsebians

he Justoe Doper trmest’s com ey

LT R L cremtsal mrveslipetion hes focesed ol
Wkt | wetin en commubants sad Ser e m
— the Cexgreny sad seling of wespons,
and the Defares Deparumact bac e

creed S wing cmsdans w0

Now 1Mo ~raer 3 o =3




How to take down the internet (in 1988)

1.  Many programs were not “memory-safe” back then.
d. Programs would let you access memory on the computer that you shouldn’t have access to
2. Find an array/buffer that lets you access memory you shouldn’t have access to.

Buffer overflow example

I Buffer (8 bytes) ]Overflow |

3. Inject some malicious code right after that array.
a. The computer will get tricked into running the code.

4. Accidentally add a bug that eats up all of the memory on each host computer.
5. Crash the entire internet.



The Morris Internet Worm source code

This disk contains the complete source code of the Morris Internet
worm program. This tiny, 99-line program brought large pieces
of the Internet to a standstill on November 2'"’, 1988.

The worm was the first of many intrusive programs that use the
Internet to spread.

iorio Computer
oIl

o:Jo History
fo I Museum




"Responsible" Hacking

e The story of Robert Morris and his Internet Worm illustrates the core dilemma
at the heart of security research

e |dentifying and exposing security vulnerabilities is very important!

e Exposing security vulnerabilities in an irresponsible manner can result in
devastating damages (monetary, physical, etc.)

e Responsible Disclosure: a vulnerability disclosure model in which a
vulnerability or an issue is disclosed only after a period of time that allows for
the vulnerability or issue to be patched or mended.



Back to our regularly
scheduled
programming...



Memory from the Stack vs. Heap




Memory from the Stack vs. Heap

Vector<string> varOnStack;

e Until today, all variables we’ve
created get defined on the

e This is called static memory allocation

e Variables on the stack are stored
directly to the memory and access to
this memory is very fast

e We don’t have to worry about
memory management



Memory from the Stack vs. Heap

Vector<string> varOnStack;

e Until today, all variables we’ve
created get defined on the

e This is static memory allocation
e Variables on the stack are stored
directly to the memory and access to

this memory is very fast

e We don’t have to worry about
memory management

string* arr = new string[numValues];

We can now request memory from the

This is dynamic memory allocation

We have more control over variables on
the heap

But this means that we also have to
handle the memory we’re using carefully
and properly clean it up when done



Cleaning Up




Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.




Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.

o Memory allocation is the process by which the computer hands you a piece of
computer memory in which you can store data.




Cleaning Up

e When declaring local variables or parameters, C++ will

automatically handle memory allocation and deallocation for you.
o Memory allocation is the process by which the computer hands you a piece of

computer memory in which you can store data.
o Memory deallocation is the process by which control of this memory (data storage
location) is relinquished back to the computer




Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

e When using new, you are responsible for deallocating the memory

you allocate.




Cleaning Up

e When declaring local variables or parameters, C++ will
automatically handle memory allocation and deallocation for you.

e When using new, you are responsible for deallocating the memory
you allocate.

e If you don't,you geta . Your program will never be

able to use that memory again.

o Too many leaks can cause a program to crash — it’'s important to not leak
memory!



Cleaning Up

® You can deallocate (free) memory with the operator:
delete[] arr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

1 |
arr

42

42




Cleaning Up

e You can deallocate (free) memory with the operator:
delete[] arr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

delete][] > U

42

42



Cleaning Up

e You can deallocate (free) memory with the operator:
delete[] arr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

delete][]




Cleaning Up

® You can deallocate (free) memory with the operator:

delete[] arr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.




Cleaning Up

® You can deallocate (free) memory with the operator:
delete[] arr;

e This destroys the array pointed to by the given pointer, not the pointer itself.
o You can think of this operation as relinquishing control over the memory back to the computer.

I . @2
arr

arr is now a . We
can re-assign it to point somewhere
else, but if we try to read from it or
write to it, very bad, bad things will
happen!




Takeaways

e You can create arrays of a fixed size at runtime by using new[].

e C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

® You are responsible for freeing any memory you explicitly allocate by calling
delete][].

e Once you've deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.



Summary



Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.




Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

e When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much
memory something needs.

o We use the keyword new to allocate dynamic memory.

o  We keep track of that memory with a pointer. (more on pointers next week!)
o We must clean up the memory when we’re done with delete.




Dynamic Memory and Arrays

e We've learned about classes, which have an interface and implementation.

e When implementing classes at the lowest level of abstraction, we need to use
dynamic memory as a fundamental building block for specifying how much
memory something needs.

o We use the keyword new to allocate dynamic memory.

o  We keep track of that memory with a pointer. (more on pointers next week!)
o We must clean up the memory when we’re done with delete.

e So far, we’ve learned how to allocate dynamic memory using arrays, which
give us a contiguous block of memory that all stores one particular type (int,
string, double, etc.).



What’s next?



Get ready to build a vector!




Arrays vs. Vectors

e Arrays are a very necessary tool to use if we want to actually store
information in a structured way in a program.

e \Vectors are a great abstraction, providing helpful methods and a clean

interface that other programmers can use to solve interesting
problems.

e Idea: Let's use a dynamically allocated array as the underlying method
of data storage for a Vector class. Best of both worlds!



Implementing a Dynamic ADT




